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Clark and Feher have shown that an electric field applied to InSb in a constant magnetic field produces 
nuclear polarization. Two mechanisms are suggested here to account for nuclear polarizations in homo
geneous samples. In one mechanism, the kinetic temperatures of "spin up" and "spin down" electron dis
tributions, 0R+ and 9R~, are assumed to be different. It is shown that a nuclear polarization of order N+/N~ 
~ZTN(0R~)/TN(Qit+)']ZT€(dR+)/Ti(dR~)^ may be produced in this case, rjy and re are the nuclear and electronic 
longitudinal relaxation times (TVs). In the second mechanism, the momentum distribution is assumed to 
be displaced by an amount Ap due to the applied electric field. A nuclear polarization of order Ap2/2m*EF 
may be induced in this case. It is suggested that a sizable fraction of the nuclear polarization observed by 
Clark and Feher is due to the first of these mechanisms. 

I. INTRODUCTION 

IT has been shown by Overhauser1 that in a system 
in which electrons interact with nuclei via a scalar 

interaction A(I*s), a certain type of nonequilibrium 
stationary electronic distribution results in nuclear 
polarization exceeding the equilibrium value by a 
factor of order ye/yN, where ye, YJV are the electronic 
and nuclear gyromagnetic ratios. Feher2 has generalized 
this and shown that when the distribution can be 
characterized by spin and kinetic (reservoir) tempera
tures 0S, OR, and ds^0R, then a nuclear polarization of 
order tanh[coe| 1/6R—1/0,| ] may be obtained. coe is the 
Zeeman energy of the electrons in the external magnetic 
field. He suggested that a stationary distribution in 
which 0R9^BS be established in a semiconductor by 
applying an electric field that is sufficiently strong to 
ensure that Ohm's law is broken (i.e., that the electrons 
are "hot")- Clark and Feher3 have shown, that an 
electric direct current of a few milliamperes can, in 
fact, polarize indium and antimony nuclei in InSb. 

I t is unlikely that the momentum distribution of hot 
electrons can be characterized by a unique tempera
ture4; furthermore, if the distribution could be char
acterized by a temperature, and the electron spins were 
relaxed by interacting with the conduction electrons 
only, 6S would equal OR (though both might differ from 
the lattice temperature di), and no excess nuclear 
polarization would result [Fig. 1(a)]. 

The transport phenomena in InSb are not yet fully 
understood, so at the present stage we try to understand 
the relevant processes leading to a nuclear polarization 
by means of certain artificial, vastly oversimplified 
models. One model describing a system in which a 
difference between 6R and 6S is established was suggested 
by Feher.2 [See Fig. 1(b).] Paramagnetic impurities 
possessing a very short spin lattice relaxation times are 
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introduced into the lattice. If these impurities interact 
with the conduction electrons sufficiently strongly by 
means of some exchange-type interaction, a difference 
between OR and 6S can be established in the stationary 
state. Another model was suggested by Clark and 
Feher.2'3 They show that when some inhomogeneity is 
introduced into InSb by inhomogeneous concentra
tions of impurities, or by inhomogeneous electric fields, 
6S at a given point in the semiconconductor may differ 
from OR at that point, and, consequently, a nuclear 
polarization may be obtained [Fig. 1 (c)]. In the present 
paper, we shall consider idealized models of homo
geneous systems, in which no localized paramagnetic 
impurities are very effective. We shall also assume that 
the relaxation processes can be described by rate 
equations. Two types of situations will be considered: 
(a) The electronic "spin u p " and aspin down" distri
butions will be assumed to be described by tempera
tures, 0ig+, 6R~> which, however, will no longer be 
assumed equal [Fig. 1(d)] ; and (b). The electronic 
distribution will be assumed to be displaced in mo
mentum space [Fig. 1(e)]. 

II. THE ELECTRONIC AND NUCLEAR 
RATE EQUATIONS 

In the present paper we neglect nuclear quadrupole 
effects. Consequently, we can consider, without loss of 
generality, systems in which the nuclear spin is I = J . 
[The population ratios N(I2)/N(IZ—1) depend only 
on the nuclear Zeeman energy co# and not on / . The 
nuclear polarization depends on / , of course.] Let TV"4", 
N~ be the fractions of nuclei with / « = + § , —§, respec
tively. The nuclear spin rate equation will then be5 

dN- dN+ 2w 
— = =— £E{#+|<p, - | 3 C ^ | P , , + > | 2 

dt dt ft v p' 

X / - ( P ) [ I - / + ( P ' ) ] - ^ - | ( P ' , +|3ew.|P> ->|2 

X / + ( P ' ) [ 1 - / - ( P ) ] } S ( P 2 - P ' 2 + C 0 e - ^ ) . (1) 

In this equation, 5Ctrt=A(l'S) is the electron-nuclear 

6 A. Abragam, Nuclear Magnetism (Oxford University Press, 
New^York, 1961). 
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FIG. 1. (a) The "hot electron" scheme proposed by Feher. Nu
clear polarization is produced when 6R5^0S; (b) the scheme sug
gested by Feher to provide for a difference between OR and 0a; (c) 
the scheme employed by Clark and Feher to establish a difference 
between OR and 6S by the application of an inhomogeneous electric 
field; (d) different kinetic temperatures of "spin up" and "spin 
down" distributions can result in a net nuclear polarization. See 
Sec. I l l ; (e) a displacement of the momentum distribution can re
sult in a net nuclear polarization. See Sec. IV. 

hyperfine interaction, / + ( p ) , /~(p) are the distribution 
function for "spin u p " and "spin down" electrons, 
respectively, and p is measured in such units that 
p 2 = £ ( p ) is the electronic kinetic energy. coe and COJV 
are the electronic and nuclear Zeeman energies. The 
+ , —, signs in the expression for the matrix elements 
refer to the electron spin. 

A similar equation governs the relaxation of electronic 
spins and is 

dn+ dn 2ir 

dt at n v v' 
|3C.« |p / ,+> | 

X/- (P) [ I - /* ' (P / ) ] -KP , ,+ |3C^IP, ->I 2 

X / + ( p 0 [ l - / - ( p ) ] } 5 ( p 2 - p ' 2 + c o e ) . (2) 

Here, ^ ± = S P / ± ( p ) is the density of electrons with 
spin " u p " and "down," respectively. 3CeR is the Hamil-
tonian describing the interaction between the electronic 
spins and the reservoir. The electronic direct spin-
lattice interaction is not included in this formula. 

Feher's expression for the nuclear polarization2 

follows immediately from (1). Let 

/±(p) = { e x p [ ( p 2 - ^ ) / ^ T c o e / 2 ^ ] + l } - 1 . 

This equality may be regarded as a definition of ds. 
Note that 6S defined this way satisfies the relationship 
lim2,_>00/+(p)//~(p) = exp (o)e/08)y which may be regarded 
as an alternative definition of 0S.6 Substitute in (1); 

dN~ dN+
 2T 

— = - — - = - E E I < P , - | 3 < ^ | P ' , + > | 2 

dt dt 7i P P' 

X{exp[(p 2 -E^) /^+o) e /2^]+l}- 1 

X{exp[(p / 2 -E^) /^-co e /2^]+l}- 1 

X5(p2-p'2+to e-a^) 

X{N+ expi(p'*-EF)/dR-a>e/26sl 

-N- e x p [ ( p 2 - £ ^ ) / ^ + c o e / 2 0 s ] } . 
Making use of the relationship p2= p/2—we+cojv ensured 
by the 8 function, the last term can be written in the 
form 

expt(p/*-EF)/dR-a}e/2ds'] 

X{N+-N~ expt-a>e-a>N)/dR+a>e/6sl}. 

Thus, when (N+/N~) exp (~co^ /^) = exp[wtf ( 1 / ^ . - 1 / 
6R)'] then dN+/dt=0. This proves Feher's relationship 
for the case of Fermi-Dirac statistics. 

The following theorem follows directly from (1), (2): 
Theorem I: If CON is neglected in the 8 function in (1), 

and if |(p, - | 5 C ^ | p r , + ) | 2 = C|(p, - | 3C e i * |p ' ,+> | 2 , 
where C is independent of p, p', and if dN+/dt=dn+/dt 
= 0, theniV+=7V-

The proof of the theorem is trivial. Its significance 
is that, when the matrix elements for nuclear and 
electronic relaxation are proportional, no nuclear 
polarization (in excess of the Boltzmann value) is 
present in a homogeneous system in the stationary 
state. This lack of polarization is independent of the 
form of / + (p ) , /~(p), and, thus, will hold for any 
electronic distribution. The matrix element for hyper
fine interaction is independent of p, p ' ; consequently, 
if the matrix element of the interaction responsible for 
electron spin relaxation is independent of p, p', then 
no nuclear polarization is possible with the schemes 
discussed here. 

III. DIFFERENT KINETIC TEMPERATURES OF 
"SPIN UP" AND "SPIN DOWN" ELECTRONS 

The electrical conductivity of InSb at low tempera
tures is due to electrons (or holes) in the impurity 
band. If the semiconductor is not compensated, the 
concentration of electrons equals the concentration of 
charged impurities; if it is compensated, the density 

6 The definition of Bs is not trivial. In this connection, see C. 
P. Slichter, Phys. Rev. 99, 1822 (1955). 
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= p(E)dE p{E')dE> PN(E,Ef) 

of charged impurities may exceed that of electrons. 
Consequently, the electron-impurity Coulomb inter
action is not weak compared with the electron-electron 
interaction, and, therefore, when the electrons are 
"hot," the electron momentum distribution is most 
likely not even a displaced Fermi distribution.4 Let us 
consider a hypothetical situation in which the spin up 
and spin down systems can be characterized by kinetic 
temperatures 6B

+ and 6R~, but 6R+9£6R~. In this case, 
the rate equations simplify to 

dN~ dN+ 

dt dt 

X{N+t{EfiR-)l\-f+{E'fiR+)-]-N-j+{E>fiR+) 

Xti-f~(E,OR-)^}d(E-E'+a>e-a>N), (3) 

dft~^ dfi C C 

= / P(E)dE / P(Ef)dEf Pe(E,E') 

dt dt J J 

X { / - ( E , f e - ) [ l - / + ( E ^ + ) ] - / + ( E ' M ) 

X [ l - / " ( £ , ^ - ) ] } 5 ( £ - £ ' + « . ) , (4) 

— / dttp dQp>
f 

fl J P^E J p'*=E' 

X\(p, -\WNe\p', +> | 2 , etc., 

^ f + ( E ) 

where 

(4irYPN(EyE') = 

and p(E) is the density of states. 
Under conditions in which the electrons obey Boltz-

mann statistics, the rate equations can be further 
simplified. We define 

fFwN±(e)= J p(E)dE J p{E')dEf 

/E 
XPN{E,E')M f,e\(E-E'+o>e) 

(5) 

n±w±(d)= / p(E)dE p{Ef)dE' 

E' 
XP<(E,E')fM ^ ,d)5(E-E'+o>P). 

The + , —, signs in w^id) and we
±(d) refer to the 

nuclear and electron spins, respectively. The rate 
equations reduce to 

dN~/dt= -dN+/dt=wN
+(eR-)N+n--wN-(6R

+)N-n+, 

dn+/dt = — drrjdt=we~ (6R~)n "(0R+)n+ 

(neglecting cox in the d function). The relationship 
between wN

+(6) and wN~{6) can be derived from the 
principle of detailed balance. At equilibrium, 

wr(0B)/w^(eB) = »o + /w~= exp (o>e/0B); 

l/T.(eR) = wr(6B)+w+(fiR), 

(a) 

/n-r) • m-^-yY 
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flip 
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FIG. 2. (a) When eR
+^eR-, the "spin up" and "spin down" 

kinetic contributions will adjust themselves in the stationary state 
so that the number of electronic spin flips "up" equals the number 
of flips "down." When the transition matrix elements for electronic 
and for mutual electron-nuclear spin flips are not proportional, this 
situation may result in a net nuclear polarization, (b) Illustration 
of the process of establishing electronic and nuclear spin polariza
tions by different spin up and spin down kinetic temperatures. 

where r€(0B) is the electronic longitudinal relaxation 
time. 

WN+ {BR)/WN- (OR) = n0
+No~/no-N0

+ ~ exp (<ae/6B), 
(since co2sr<£"a>e) 

1/TJV (OR) = wN
+ (0B)no~+wN- (^i?)^o+ 

= 2wN
+(dR)no~= 2wN~(6B)no+. 

Making use of these relationships, the rate equations 
can be written in the form 

dn+ dnr 
=\rt(eB-) 

dt dt 
l+exp| 

( ~ ) 

" Te(fe+) 

dN~ 

dt 

dN+ 

dt 

l+expf—) , 

~[_2rN (eB-)n0- (^«+) J-W+nr 

(6) 

- [2r^(^+)n0
+(^-)]-W-»+, 

and at equilibrium 

n+ re(^+)[l+exp(co^E+)] _ r € (^ + ) n^(BR-) 

n~ Te(dB-)tl+exp(-coe/dR-)2 r€(dB~) no~(dR
+)' 

iV+ n+TN(pB-)n0-(eB
+) Te(eB

+)rN(eB~) 

N~ n~ TN(dB+)n0
+(dB-) Te(eB~)rN(eB+)' 

This way the nuclear polarization is related to the 
temperature dependence of the electronic and nuclear 
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relaxation times. When r€ and TN have the same 
temperature dependence, there will be no nuclear 
polarization (in excess of the Boltzmann value). This 
is a slight generalization of Theorem I. For the hyperflne 
interaction postulated for this model, TN(6) is inversely 
proportional to 0. Consequently, if r€(0) is proportional 
to 6a~\ then N+/N~= (0R

+/dR-)a; thus if a is of order 
unity, nuclear polarizations of order unity can be 
expected, if a sizable temperature difference can be 
established between the spin up and spin down elec
tronic distributions. 

This is the main result of the present paper, therefore 
it may be advantageous to dwell on it further. The 
treatment of the rate equations here follows the lines 
of Overhauser's paper.1 Following Overhauser's paper, 
his results have often been described in a slightly 
different way; see Fig. 2(a) and Ref. 5 p. 345. Let 
91 ( ± , ± ) be the probability to find an electron-nucleus 
pair with s 2 = ± J , 7 2 = ± J . (The first sign refers to the 
electron; the second to the nuclear spin.) Then, by (6), 

9l(+,-)_9l(+,+) 

3 l ( - , - ) 9l(- ,+) 

/ C0e \Te(dR
+) l + exp(0)e/6B

+) 
= expf J (6a) 

\dR-/Te(dR-) l+exp(a>e/dR-) 
and 

9 l ( - , + ) / o)e \TN(6R-) l+exp(co*/02T) 
= exp ) . (6b) 

9fc(+, - ) V eR~/TN(dR+) l+exp(«./0i8+) 

Consequently, 

i V + _ < J l ( + , + ) + 3 l ( - , + ) 

N~ 9 l ( + , - ) + 9 l ( - , - ) 

_ 9 l ( - , + ) 91(4-, - ) _ r e ( ^ + ) rN{BR-) 

9 l ( + , - ) 9 l ( ~ , - ) r€(6R-) rN(dR+) ' 

Note that when o)e<^.8R~, dR
+, then (6a) reduces to 

9fl(+, - ) _ 9 l ( + , +)_Te(dR+) 

9l(—, —) 9 l ( - , + ) Te(dR-)' 

thus, if we can maintain a difference between BR
+ and 

0R~, we can establish an electron spin polarization 
(i.e., a very low spin temperature), and in principle at 
least, invert electron spin polarizations. 

When BR<^EF, and we have degenerate Fermi 
statistics, the preceding approximation does not apply. 
However, we can estimate the nuclear polarization in 
this case, assuming for simplicity that 0R~=07 o)e<KEF. 
(See Fig. 2.) Let us define a dimensionless parameter y 
by EF-+ue=EF

++ydR
+. [_EF+, EF~ are defined by 

j(EF) — \^\ The rate equation for the electronic spin 
transition is now 

dn+ dnr rEF~ 
= = / dE 

dt dt J o 

XP(E)p(E+o,e)Pe(E,E+o>e)ll-f
+(E+o>e)~] 

- f dE p(E)p(E+ae)Pe(E, E+we)f+(E+ue) 
J EF~ 

~p(EF-)p(EF+)ldR+(l+y)Pe(EF+-±dR+) 

-dR+(l-y)P£(EF++±dR+)^. (7) 

In addition there is a term involving dp(E)/dE, but 
this term will not create a nuclear polarization, by 
Theorem I. In the stationary state, dn+/dt=0 and, 
therefore, 

y~Zl/Pe(EF+)-]ZdPe(EF+)/dE-]dR+. 

Let us define a dimensionless quantity a by 

a 1 dPe{EF+) 

EF+ Pe{EF+) dE 

When the transition matrix element depends on E, a 
will be different from zero, and if the dependence is not 
very weak, a will be of order unity. Thus, y^adR

+/EF, 
and the nuclear polarization will be of the same order. 

IV. DISPLACEMENT OF THE MOMENTUM 
DISTRIBUTION 

When the electron-electron interactions are strong 
compared with the electron lattice interactions, 6R

+ 

~dR~, and the mechanism discussed in Sec. I l l cannot 
yield appreciable nuclear polarization. However, under 
the influence of a strong electric field, the electron 
momentum distribution as a whole may shift, and if 
this shift is appreciable, it can induce appreciable 
nuclear polarization [Fig. 1(e)]. The displacement Ap 
of the distribution is given by A^==-m*Adrift ==w*/ze, 
where w* is the effective mass (assumed isotropic), /x is 
the mobility, and e is the applied electric field. If the 
displacement is small, i.e., Ap2/2nt*<£.0R, we can expand 
the distribution function in powers of Ap and evaluate 
the rate equations. Let us express Ap in units of 
(energy)172, i.e., in units of p/(2?n*)l/2. 

(a) Maxwell-Boltzmann Statistics 

I t is not difficult to show that for a Boltzmann 
distribution, and for momentum-independent matrix 
elements, a momentum shift Ap will result in an extra 
electronic spin polarization of value 

(»+/*-) e x p ( - « 6 / 0 * ) « l - A ^ X f {o>e/eR), (8) 

this approximation being good to order Ap2, Similarly, 
for the nuclear polarization, the same expansion yields 

(N+/N-) e x p ( - W 0 * ) e x p [ « e ( l / 0 . - l / 0 * ) ] 
~l-Ap2XU"e/dR). (9) 
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When we make use of (8) to evaluate 0S by the relation
ship n+/n~— exp(—coe/0s), and substitute this value in 
(9), we get N+/N~=exp(—UN/dR), which indicates 
that no nuclear polarization in excess of the Boltzmann 
value is established. This is, of course, an immediate 
corollary of Theorem I. We shall prove even a slightly 
more general result; namely, for Boltzmann statistics, 
there is no increase in nuclear polarization to order 
Ap2/0R even if the matrix element for an electronic 
spin flip depends on | p— p ' | . The proof is as follows: 

Let f±(v) = eR-*/2A±(6s) e x p ( - p 2 / ^ ) . Then, 

/ ± ( p - A p ) = / ± ( p ) + 2 ( p - A p / ^ ) / ± ( p ) 
+ 2[2(p. AV/ORY- Ap/0*2] /±(p)+ . . . . (10) 

The term in the rate equations which is proportional to 
Ap will vanish, due to the symmetry of the system. 
(Changing the direction of the applied electric field 
cannot change the nuclear polarization in the present 
situation). Also, when the angular integration is 
performed, (p-Ap)2 is equivalent to |p2Ap2. Thus, (10) 
is equivalent to 

/ ± ( p - A p ) = ( l - 2 A p V ^ + | p ^ p V ^ ) / ± ( p ) . 

We can also expand /^(p) as a power series in OR, 

/±(p , 6R+MB) = [ 1 + (p2/0*2-3/20*)A0*]/±(p,0«). 

Thus, when 

4Ap2 

3fes /('-£)-£/(*-
2A0R\ 

30 

then the two distributions are proportional. Therefore, 
to order Ap2, the displacement Ap is proportional to an 
increase in the kinetic temperature of A0#=fAp2. A 
change in OR per se cannot produce a nuclear polar
ization (in excess of the Boltzmann factor), and our 
theorem is proved. 

Consequently, for a slightly shifted Boltzmann 
distribution, the nuclear polarization can be at most 
of order (Ajf/0B)2. 

When Ap2 is no longer small compared with 6R, large 
net polarizations may be induced. To illustrate this 
point, we shall estimate the nuclear polarization for an 

artificial model in which the electronic spin-flip matrix 
element is proportional to l / ( p — p')2, and A >̂2 >̂a>e. 
Let us consider for simplicity a one-dimensional model, 
since this does not alter the basic physical features. 
The rate equation (2) reduces in this case to 

dn+ dnr 2ir 

—= = - £ E K P , 
dt dt ft » •>' 

|3C.«|P', + ) l 2 

X [ / - ( p - A p ) - / + ( p ' - A p ) ] S ( p 2 - p ' H - c o e ) . (11) 

Expanding the momentum change 8p=\p'— p | in 
powers of coe/A^2, we get l/dp*~ (Ap/o)ey(l±o)e/Ap2), 
when ppf>0. (The transitions for which pp'<0 can be 
neglected in this approximation.) The upper and lower 
signs apply to the transitions H > — and > + 
respectively. We see that the ratio of the transition 
matrix elments squared is approximately l+2a)e/Ap2, 
and since by Theorem I no net polarization is expected 
when the ratio is unity, we may expect to obtain in 
this case nuclear polarizations of order Ue/Ap2. Thus, 
when o)e^Ap2

y we may expect to get a nuclear polar
ization of order unity. 

(b) Degenerate Fermi-Dirac Statistics 

The rate equation (2) for the electronic spin transi
tions is, for a distribution displaced by an amount Ap, 

dn+ dnr 2T 

—=-—=—LLKP' .+ l rc .a lp , - ) | 2 

dt dt ft p p' 

X { / - ( p - A p ) [ l - / + ( p ' - A p ) ] 

- / + ( p - A p ) [ l - / - ( p - A p ) ] } S ( p 2 - p " + a O 

2TT 
= — £ E I < P ' , + | 3 e . * | p , - > l s 

ft * »' 

x-

where 

exp[g(Ap)]-exp |>(Ap)] 

' {exp[g(Ap)]+l} {exp[/KAp)]+1} 

g (Ap) = C ( p - A p ) 2 + ! w , - £ P ] / 0 B , 

KAp) = [ ( p ' - A p ) 2 - i W e - £ / ] / 0 B . 

(12) 

When the displacement of the Fermi surface is small, 
we can expand dn+/dt in powers of Ap.7 The term 
linear in Ap will vanish due to the symmetry of the 
problem while, to order Ap2, 

exp[g(Ap)]-exp[>(Ap)] 

{expQKAp)]+l}{exp[>(Ap)]+l} 

1 p 2 - p ' 2 exp[g(0)]{l-expQK0)]} 
= -Ap2 

2 BR2 {l+exp[g(0)]}» 

1 Ap2 coe 

= / - ( P ) [ 1 - / - ( P ) ] [ 2 / - ( P ) - 1 ] . (13) 
2 OR OR 

7 The author is indebted to Dr. R. Griffiths for this expansion. 
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A f+(p) 

FIG. 4. Allowed transitions for a shifted Fermi distribution. The 
transitions of type (b) involve a large momentum change, and if 
the transition matrix elements are small for large momentum 
changes, these transitions are not very important unless the Zee-
man energy is very small. The transitions of type (a) may produce 
a nuclear polarization, if the transition matrix elements are energy-
dependent. 

For an arbitrary function F{E) that is smooth in the 
vicinity of E=EF, the relationship 

/dF(E)\ 
F(E)f(E)ll-f(E)X2f(E)-iyE=~6R( ) 

\ dE / EF 

(14) 

applies to order 6R/EF. Let us define a dimensionless 
parameter a by 

dQ d&'\(p'9 + |3CCjR|p, - > | : 

dE 

= --( <Kl <JQ'\(v', + | 3 C € B | p , - > | M . (15) 
E F \ J J / EF 

Then, the electronic spin polarization will change by a 
factor of 

1 Ap2 0)e OR 
1 a (16) 

2 6R OR EF 

due to the displacement of the Fermi surface, and we 
may expect to get nuclear polarizations of order 
a(Ap2/6R)(o)e/EF). This expansion is valid only when 
(Ap*a)ey

/2«dR<<rEF. 
When dR

2<Ap2o)e, this approximation does not apply. 
However, to understand the physics of this particular 
case, we can consider a particularly simple situation, 
namely, a one-dimensional model in which 6R = 0 
(Fig. 4). In this model, the allowed transitions are of 
two types: (a) pp'>0 (these transitions are due to the 
fact that when the distribution is displaced, the 
difference between the momenta of spin up and spin 
down electrons at the Fermi surface, pp+—pF~~, will 
no longer correspond to an energy difference coe); and 
(b) ppf<0, (the displacement of the distribution creates 

holes into which the electrons can fall). Let us define 
parameters @, y by 

0 = (pF+-pF~)AP=o~o>e/2(EF)m; 

pF
±(Ap) = lpF

±(0)+Ap1(l^y). 

Then, the rate equation for the electron spins is 

dn+ 

dt 

Ap 
3— 
pFL 

F(Ap)i 
dP(Ap)-

-2Ap P(2pF) 

dp J 

dP(2pF)-\ 

dp 
( l - 2 7 ) 

Ap\ 

PFL 

+ 2Ap\ 

dP(Ap)n 

P(2pF)-\ 

dp J 

dP{2pF) 

dp •] l ( 1 + 2 7 ) , (17) 

where F(Ap) = 2ir/fi\(p, - \WeR\p'9 + ) | 2 . In the sta
tionary state, dn+/dt=0, so 

27 = 
r i dP(Ap) 

•P{Ap) dp 

pFP{2pF) 

Ap t 

1+2- f2 -
1 dP(2pF) pF 

Ap 
0 P(Ap) P(Ap) dp 0 J 

(18) 

The last term in the denominator is very small. 
When P(p) decreases with increasing p sufficiently 

strongly (roughly, faster than 1/p), then, when 0 is not 
too small, the second term in the denominator is small 
too. Under these circumstances we may expect to obtain 
a nuclear polarization of order Ap/pF. The condition 
for the validity of this approximation is 6R<Ap2 

<W?/EF- When ooe is small, we can still use Eq. (18) 
as long as AP2«EF. 

V. DISCUSSION 

In the previous sections it was shown that appreciable 
nuclear polarizations may be created if the "kinetic 
temperatures" of the spin up and spin down distribu
tions, 6R+ and 6R~, are different, or if the momentum 
distribution is shifted appreciably. Let us now investi
gate whether situations reminiscent of these idealized 
ones may actually exist in the InSb samples investigated 
by Clark and Feher.3 Let us first list a number of 
approximations made in these idealized models. 

(i) The interaction of the nuclear spins with anything 
except the conduction electrons has been neglected. 
In reality, the nuclei probably relax mostly via para
magnetic impurities in the sample.3 Such relaxation 
may short-circuit the polarizing effect and result in 
actual polarizations several orders of magnitude smaller 
than the estimated ones. Phenomenologically, the short 
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FIG. 5. de-Haas-van-Alphen oscillations of the nuclear polar
ization expected for the model of Sec. III. When the magnetic 
field is large, (a), only the lowest Landau level is occupied signifi
cantly, and the velocity of "spin up" electrons exceeds that of 
"spin down" electrons. When an electric field is applied, "spin 
up" electrons will heat up slower than "spin down" ones, and, 
therefore, BR+<6R". When the magnetic field is somewhat weaker, 
(b), "spin up" electrons occupy the second Landau level, and 
as a result the situation may be reversed, and 0R+>$R~, and the 
nuclear polarization will change sign. In this graph, the density 
of states is plotted as function of the energy. The average velocity 
in the direction of the magnetic field is approximately inversely 
proportional to it. 

circuiting of the conduction electron-nuclear interaction 
manifests itself in TN being almost independent of BR. 
If TN were due to interaction with the conduction 
electrons, we would expect rNBR to be approximately 
constant, by the Korringa relationship.8 We can esti
mate TN due to the interaction with the conduction 
electrons by making use of the value of | ^ ( 0 ) j 2 esti
mated by Gueron.9 At 0R=4:oK, for the samples used, 
TN due to this interaction may be of order 1000 h for 
Sb123, while the observed rN is of order 40 h.3 Thus, 
the observed nuclear polarization may be expected to 
be 1 to 2 orders less than the estimated ones. 

(ii) The electronic wave functions were assumed to 
be Bloch waves. Such an assumption is reasonable when 
QR>O)C, where a)c=efiH/tn*c is the cyclotron frequency. 
Under the conditions of the experiment, coc was of order 
&X100°K, which is large compared with 6R and, there
fore, this assumption is not justified. Most of the 
estimates presented here are, however, independent of 
the assumption coc<6R. When coc>0#, we must use the 
eigenfunctions of an electron in a magnetic field, which 
are characterized by the quantum numbers n, pz, and 
v, where the kinetic energy is £ = (^+|)o>c+^z2/2w*, 
and j/ is a quantum number distinguishing between 
degenerate states. Most of the rate equations will still 
be valid when these quantum numbers replace px, py, 
and p%. The situation is particularly simple when coc^>0#. 
In that case, only the lowest Landau level contributes 
significantly to the relaxation. (See Fig. 5.) Of course, 

8 J. Korringa, Physica 16, 601 (1950). 
9 M. Gueron, Compt. Rend. 254, 1969 (1962). 

we must use, in the rate equations, the density of 
states p(E) appropriate for this situation. When the 
electric and magnetic fields are perpendicular, we must 
also consider the Ettinghausen effect.3'10 

(iii) Effects due to electron-electron correlations,4 

and to electron-impurity correlations (such as "freeze-
out"11) have been neglected. 

Electron-electron scattering tends to reduce the 
difference between 6R+ and 6R~, thus reducing the 
nuclear polarization. This factor is very important 
and must be taken into account in any quantitative 
estimate of the nuclear polarization. When electron-
electron energy exchange is considered, it is very im
portant to take into account the large magnetic field, 
coe^EF<ccc, which makes it difficult for spin-up and 
spin-down electrons to exchange energy while the total 
energy and momentum are conserved. 

In the experiments carried out so far, the displace
ment of the Fermi sphere was probably small. The 
displacement when the electric and magnetic fields are 
parallel is given by Ap=nt*y,e; in the samples investi
gated so far,3-12 w*~0.014w0, M ~ 3 X 105 cm2/V per sec, 
€ « 1 V/cm. Thus A^ 2 /2w*=£X4XlO- 3 °K. This value 
is very small compared with the other energies involved, 
and by the order of magnitude estimates of Sec. IV, 
the polarization resulting from such shifts is negligible. 
However, in samples about one order of magnitude 
purer than the ones investigated so far, fx and e may be 
considerably larger and Ap2/2tn* may be of order kdi. 
The situation is different with regard to the mechanism 
suggested in Sec. I I I . I t is very likely that, in the 
experiments of Clark and Feher, 6R

+ was considerably 
different from BR~. The magnetic fields applied are 
such, that ue~EF) and, thus, the velocity of spin up 
and spin down electrons at the Fermi level is consider
ably different. 

Not enough is known about the energy exchange 
between hot electrons and the lattice in InSb at helium 
temperatures. The scattering of electrons by ionized 
impurities is probably elastic and, therefore, contributes 
mostly to the momentum exchange, rather than the 
energy exchange; thus, the later may be due to inter
action with acoustical or optical phonons.4 However, 
whatever the mechanism responsible for the energy 
exchange is, it most likely depends strongly on the 
electronic velocity (for example, the matrix element 
for scattering of electrons by acoustical phonons is 
proportional to the electronic velocity13). The mean 
kinetic temperature is of the order 20°-50°K, while 
the lattice temperature is 4°K. Consequently, it is 
likely that \0R+-dR-\/\dR

++eR-\ « l . Also, the elec-

10 B. V. Paranjape and J. S. Levinger, Phys. Rev. 120, 437 
(1960). 

u R. J. Sladek, J. Chem. Phys. Solids 8, 515 (1959). 
12 R. Isaacson, Bull. Am. Phys. Soc. 7, 484 (1962); ibid. 7, 613 

(1962). 
13 C. Kittel, Introduction to Solid State Physics (John Wiley & 

Sons, Inc., New York, 1900), 2nd ed., p. 303. 



588 M . W E G E R 

tronic spin-lattice relaxation may be due to the mecha
nisms suggested by Yafet,14 in which the matrix element 
of the spin-reservoir interaction is strongly momentum-
dependent. Thus, both necessary conditions for a 
sizable polarization via this mechanism are satisfied. 
A salient feature of this mechanism is, that when the 
magnetic field is changed so that the Fermi energy 
passes through a peak in the density of states (Fig. 5), 
the sign of the nuclear polarization should reverse, 
because the ratio of the velocities of spin up and spin 
down electrons at the Fermi surface reverses. This is 
apparently in agreement with experiment. 

VI. CONCLUSION 

We have been considering idealized models that can 
account for a sizable nuclear polarization in a homo
geneous semiconductor under the influence of homo
geneous, constant electric and magnetic fields. We 
found that there are simple models characterized by 
the following parameters: The kinetic temperatures of 
spin up and spin down electrons, 6R

+ and 6R~; the shift 
of the momentum distribution, Ap2/2m*; the Zeeman 
energy cce; the Fermi energy EF ; the cyclotron energy 
coc; and a dimensionless parameter a describing the 
energy dependence of the matrix element responsible 
for electronic spin relaxation. We considered the 
following two classes of situations: QR+T£6R~, A^2 = 0, 
and 6R+=0R~, Ap25^0. We saw that, in the first case, 
we may obtain nuclear polarizations of order a\0R+ 

—0R~\/\BR+-\-6R~\. We saw that in order to obtain a 
large difference between 0R

+ and 6R~, o)e should not be 
small compared with EF, and also 0R

++6R~ should not 
be large compared with EF. However, if the magnetic 
field is so large that o)c^>EF, the rates for establishment 
of the nuclear polarization will be very slow. Thus, 
in effect, the optimum conditions for the establishment 
of nuclear polarization by this mechanism are a)e~EF 
^BR±'^>6R:¥. In the second case, we saw that in order 
to obtain large nuclear polarizations, we should have 
Ap2/2nt*~EF, 6R<o)e* In this case, polarizations of 
order aAp2/2ni*EF may be expected. In practice, it 
may prove very hard to shift the momentum distri
bution very much; therefore, it is probably hard to 
obtain sizable nuclear polarization by using this second 
scheme. 

When the various parameters have the values 
resulting in optimum nuclear polarization, it is very 
hard to find rapidly converging expansions for the rate 
equations, and it may be necessary to resort to numer
ical integrations. Work is now under way in this 
laboratory in this direction. 
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List of Symbols 

^(p) Momentum distribution function of 5 « = ± | 
electrons. 

n^- Number of sz—zL\ electrons per unit volume. 
N± Number of Iz=dt% nuclei per unit volume. (In 

this paper, only the I=\ case is treated.) 
p ?ik/\/2ni* (so that the kinetic energy is p2). 
Ap Displacement of the momentum distribution 

by an applied electric field. 
PN Square of matrix element of electron-nuclear 

interaction. 
P e Square of matrix element of electron-spin 

electron-translational motion interaction. 
wjyr Transition probability for mutual electron-

nucleus spin flips. 
w€ Transition probability for electron spin flips. 
a Dimensionless parameter giving energy de

pendence of Pe. 

1 dPe(E) 

Pt{E) dE 

7 (EF+-EF-+IUae)/0R or lpF(Ap)-pF(0)-Apy 
pF. EF, PF are the. energy and momentum at 
the Fermi surface. 

61 Lattice temperature expressed in energy units. 
6N Nuclear spin temperature expressed in energy 

units. 
6R Reservoir (i.e., kinetic) temperature expressed 

in energy units. 
6R± Kinetic temperature of s 3 = z b j electrons ex

pressed in energy units. 
6S Electron spin temperature expressed in energy 

units. 
TN Nuclear longitudinal relaxation time (T\), 

assumed due to hyperfine interaction only. 
T£ Electron spin longitudinal relaxation time (7\) . 
o)c Cyclot ron frequency efiH/tn*c. 

coe Electron Zeeman energy g*l3H. 
OON Nuclear Zeeman energy g^NH. 

Some symbols that are used only in one place in this 
paper are not listed here. 


